Generalizations of Bernoulli Numbers and Polynomials
نویسندگان
چکیده
The concepts of Bernoulli numbers B n , Bernoulli polynomials B n (x), and the generalized Bernoulli numbers B n (a, b) are generalized to the one B n (x; a, b, c) which is called the generalized Bernoulli polynomials depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B n , B n (x), B n (a, b), and B n (x; a, b, c) are established.
منابع مشابه
Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملSome Generalizations and Basic (or q-) Extensions of the Bernoulli, Euler and Genocchi Polynomials
In the vast literature in Analytic Number Theory, one can find systematic and extensive investigations not only of the classical Bernoulli, Euler and Genocchi polynomials and their corresponding numbers, but also of their many generalizations and basic (or q-) extensions. Our main object in this presentation is to introduce and investigate some of the principal generalizations and unifications ...
متن کاملViewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
متن کاملGeneralizations of Euler Numbers and Polynomials
In this paper, the concepts of Euler numbers and Euler polynomials are generalized, and some basic properties are investigated.
متن کاملGeneralizations of the Bernoulli and Appell Polynomials
We first introduce a generalization of the Bernoulli polynomials, and consequently of the Bernoulli numbers, starting from suitable generating functions related to a class of Mittag-Leffler functions. Furthermore, multidimensional extensions of the Bernoulli and Appell polynomials are derived generalizing the relevant generating functions, and using the Hermite-Kampé de Fériet (or Gould-Hopper)...
متن کامل